Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May 25;267(15):10295-301.

Purification and characterization of a DNA-binding protein activated by ionizing radiation

Affiliations
  • PMID: 1587818
Free article

Purification and characterization of a DNA-binding protein activated by ionizing radiation

B Teale et al. J Biol Chem. .
Free article

Abstract

Exposure of mammalian cells to a variety of agents leads to the activation of pre-existing proteins and the induction of specific genes. We have recently described the appearance of a specific DNA-binding protein in nuclei from cells exposed to ionizing radiation (Singh, S. P., and Lavin, M. F. (1990) Mol. Cell. Biol. 10, 5279-5285). This protein is present in the cytoplasm of unperturbed cells and is apparently translocated to the nucleus in response to radiation damage. We describe here the purification and characterization of this specific DNA-binding protein. Purification involved the use of affinity chromatography employing a multimeric form of the DNA-binding motif conjugated to cyanogen bromide-activated Sepharose. Three DNA-binding species were recognized by UV-cross-linking and South-Western analysis. The major species or that with the highest affinity was approximately 70 kDa in size. DNase-1 footprint analysis revealed a single binding site in the kappa immunoglobulin gene enhancer and in a putative control sequence upstream from the c-myc gene. At salt concentrations as high as 1 M, up to 40% of the DNA-binding activity was maintained and the Kd was calculated to be 1.205 x 10(-6) M-1. Binding activity was found to be modulated by phosphorylation. Removal of phosphate groups from the protein resulted in a major loss of binding activity. It is not clear at this stage whether the factor(s) described here plays a role in transcription control or a more general DNA-processing role in response to radiation damage.

PubMed Disclaimer

Publication types

LinkOut - more resources