Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jul 1;13(13):4300-5.
doi: 10.1016/j.bmc.2005.04.023.

Mechanism of biochemical action of substituted 4-methylcoumarins. Part 11: Comparison of the specificities of acetoxy derivatives of 4-methylcoumarin and 4-phenylcoumarin to acetoxycoumarins: protein transacetylase

Affiliations
Comparative Study

Mechanism of biochemical action of substituted 4-methylcoumarins. Part 11: Comparison of the specificities of acetoxy derivatives of 4-methylcoumarin and 4-phenylcoumarin to acetoxycoumarins: protein transacetylase

Ajit Kumar et al. Bioorg Med Chem. .

Abstract

Our earlier observations led to the identification of a microsomal enzyme termed as acetoxy drug: protein transacetylase (TAase) catalyzing the transfer of acetyl groups from acetylated polyphenols to the receptor proteins. TAase was conveniently assayed by the irreversible inhibition of cytosolic glutathione S-transferase (GST) by the model acetoxycoumarin, 7,8-diacetoxy-4-methylcoumarin (1). The specificities of the acetoxy group on the benzenoid ring and position of the pyran carbonyl group of the coumarin with respect to oxygen heteroatom for the catalytic activity of TAase were also reported earlier. In this communication, we have demonstrated that the acetoxy coumarins and acetoxy dihydrocoumarins having a methyl group instead of a phenyl ring at the C-4, when used as the substrates, resulted in enhancement of TAase activity, while the saturation of double bond at C-3 and C-4 position had no effect on TAase activity. A comparison of the optimized structures of 1 and 7,8-diacetoxy-4-phenylcoumarin (2) suggested that the observed influence may be due to out of plane configuration of the phenyl ring at C-4. Further, the TAase-catalyzed activation of NADPH cytochrome c reductase and inhibition of aflatoxin B1 (AFB1)-DNA binding by acetoxy 4-phenylcoumarins and dihydrocoumarins were significantly lower as compared to those caused by acetoxy 4-methylcoumarins.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources