Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 15;280(2):307-20.
doi: 10.1016/j.ydbio.2005.01.004.

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo

Affiliations
Free article

The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo

Valeria Azcoitia et al. Dev Biol. .
Free article

Abstract

Homeodomain proteins of the Meis subfamily are expressed dynamically in several organs during embryogenesis and exert potent regulatory activity through their interaction with Hox proteins and other transcription factors. Here we show that Meis1 is expressed in the hematopoietic stem cell (HSC) compartment in the fetal liver, and in the primary sites of definitive hematopoiesis, including the aorta-gonad-mesonephros (AGM) mesenchyme, the hemogenic embryonic arterial endothelium, and hematopoietic clusters within the aorta, vitelline, and umbilical arteries. We inactivated the Meis1 gene in mice and found that Meis1 mutant mice die between embryonic days 11.5 and 14.5, showing internal hemorrhage, liver hypoplasia, and anemia. In Meis1 mutant mouse fetal liver and AGM, HSC compartments are severely underdeveloped and colony-forming potential is profoundly impaired. AGM mesenchymal cells expressing Runx1, an essential factor for definitive HSC specification, are almost absent in mutant mice. In addition, hematopoietic clusters in the dorsal aorta, vitelline, and umbilical arteries are reduced in size and number. These results show a requirement for Meis1 in the establishment of definitive hematopoiesis in the mouse embryo. Meis1 mutant mice also displayed complete agenesis of the megakaryocyte lineage and localized defects in vascular patterning, which may cause the hemorrhagic phenotype.

PubMed Disclaimer

Publication types

MeSH terms

Substances