Functional analysis of sigH expression in Corynebacterium glutamicum
- PMID: 15883048
- DOI: 10.1016/j.bbrc.2005.04.073
Functional analysis of sigH expression in Corynebacterium glutamicum
Abstract
The sigH gene of Corynebacterium glutamicum encodes ECF sigma factor sigmaH. The gene apparently plays an important role in other stress responses as well as heat stress response. In this study, we found that deleting the sigH gene made C. glutamicum cells sensitive to the thiol-specific oxidant diamide. In the sigH mutant strain, the activity of thioredoxin reductase markedly decreased, suggesting that the trxB gene encoding thioredoxin reductase is probably under the control of sigmaH. The expression of sigH was stimulated in the stationary growth phase and modulated by diamide. In addition, the SigH protein was required for the expression of its own gene. These data indicate that the sigH gene of C. glutamicum stimulates and regulates its own expression in the stationary growth phase in response to environmental stimuli, and participates in the expression of other genes which are important for survival following heat and oxidative stress response.
Similar articles
-
The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes.J Bacteriol. 2007 Jul;189(13):4696-707. doi: 10.1128/JB.00382-07. Epub 2007 May 4. J Bacteriol. 2007. PMID: 17483229 Free PMC article.
-
The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress.Biochem Biophys Res Commun. 2005 Nov 25;337(3):757-64. doi: 10.1016/j.bbrc.2005.09.115. Epub 2005 Sep 28. Biochem Biophys Res Commun. 2005. PMID: 16212936
-
The whcA gene plays a negative role in oxidative stress response of Corynebacterium glutamicum.FEMS Microbiol Lett. 2009 Jan;290(1):32-8. doi: 10.1111/j.1574-6968.2008.01398.x. Epub 2008 Nov 10. FEMS Microbiol Lett. 2009. PMID: 19016879
-
Sigma factors and promoters in Corynebacterium glutamicum.J Biotechnol. 2011 Jul 10;154(2-3):101-13. doi: 10.1016/j.jbiotec.2011.01.017. Epub 2011 Jan 26. J Biotechnol. 2011. PMID: 21277915 Review.
-
The transcriptional regulatory network of the amino acid producer Corynebacterium glutamicum.J Biotechnol. 2007 Apr 30;129(2):191-211. doi: 10.1016/j.jbiotec.2006.12.013. Epub 2006 Dec 20. J Biotechnol. 2007. PMID: 17227685 Review.
Cited by
-
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.BMC Genomics. 2013 Oct 19;14(1):714. doi: 10.1186/1471-2164-14-714. BMC Genomics. 2013. PMID: 24138339 Free PMC article.
-
Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum.J Biol Chem. 2009 Jun 19;284(25):16736-16742. doi: 10.1074/jbc.M109.009027. Epub 2009 Apr 29. J Biol Chem. 2009. PMID: 19403527 Free PMC article.
-
Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.Antioxid Redox Signal. 2014 Feb 1;20(4):589-605. doi: 10.1089/ars.2013.5423. Epub 2013 Sep 18. Antioxid Redox Signal. 2014. PMID: 23886307 Free PMC article.
-
Regulation of oxidative stress response and antioxidant modification in Corynebacterium glutamicum.World J Microbiol Biotechnol. 2024 Jul 15;40(9):267. doi: 10.1007/s11274-024-04066-z. World J Microbiol Biotechnol. 2024. PMID: 39004689 Review.
-
Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.Redox Biol. 2019 Jan;20:514-525. doi: 10.1016/j.redox.2018.11.012. Epub 2018 Nov 17. Redox Biol. 2019. PMID: 30481728 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources