Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Oct;30(10):1832-40.
doi: 10.1038/sj.npp.1300730.

Restraint increases dopaminergic burst firing in awake rats

Affiliations
Free article
Comparative Study

Restraint increases dopaminergic burst firing in awake rats

Kristin K Anstrom et al. Neuropsychopharmacology. 2005 Oct.
Free article

Abstract

In anesthetized animals, dopamine neurons fire in tonic and phasic firing modes hypothesized to be regulated by dissociable circuit mechanisms. Salient events critical to learning, reward processing, and attentional selection elicit transient phasic bursts. It is unclear, however, how burst activity contributes to sustained firing patterns in awake animals and if behavioral conditions known to affect dopaminergic neurotransmission change impulse activity levels. Acute stress is known to increase extracellular dopamine in the striatum and the prefrontal cortex. In this study, we have used multiunit recording to define and follow activity patterns in single dopaminergic neurons across days and to determine how restraint, a model of acute stress, changes tonic and phasic firing patterns. Long-term recording shows that a population of 23 putative dopamine neurons has heterogeneous firing profiles under baseline conditions. In all, 62% showed significant burst activity under resting conditions, while others showed predominantly regular (17%) or random (21%) activity patterns. Restraint increased mean firing rate in all dopamine neurons, but preferentially increased burst firing in neurons with higher burst rates under resting conditions. Finally, we show that increased burst firing can persist 24 h after a single exposure to stress. These data indicate that subsets of dopamine neurons may be sensitive to circuit mechanisms activated by stress and that persistent changes in burst firing may be evidence of synaptic plasticity. Furthermore, increased burst firing may be a mechanism through which stress augments extracellular dopamine in selected terminal regions.

PubMed Disclaimer

Publication types

LinkOut - more resources