Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Nov;205(2):278-85.
doi: 10.1002/jcp.20396.

Atypical PKC-zeta and PKC-iota mediate opposing effects on MCF-7 Na+/K+ATPase activity

Affiliations
Comparative Study

Atypical PKC-zeta and PKC-iota mediate opposing effects on MCF-7 Na+/K+ATPase activity

Antonella Muscella et al. J Cell Physiol. 2005 Nov.

Abstract

We demonstrated previously that in serum-starved MCF-7 breast cancer cell line, Ang II increased Na+/K+ATPase activity and activated the protein kinase C zeta (PKC-zeta) (Muscella et al., 2002 J Endocrinol 173:315-323; 2003 J Cell Physiol 197:61-68.). The aim of the present study was to investigate the modulation of the activity of the Na+/K+ATPase by PKC-zeta in MCF-7 cells. Here, using serum-starved MCF-7 cells, we have demonstrated that the effect of Ang II on the Na+/K+ATPase activity was inhibited by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS) and by high doses of GF109203X, inhibitor of PKCs. When MCF-7 cells, grown in 10% fetal bovine serum (FBS), were stimulated with Ang II a dose- and time-dependent inhibition of the Na+/K+ATPase activity was obtained. Under this growth condition we found that mRNAs for AT1, AT2, and for Na+/K+ATPase alpha1 and alpha3 subunits were unchanged; besides both the activity of the Na+/K+ATPase and the level of PKC-zeta also were unaffected by the serum. The atypical PKC-iota level (present in very low abundance in serum-starved MCF-7) was increased and Ang II provoked its translocation from the cytosol to plasma membrane. PKC-zeta was localized to the membrane, and upon Ang II treatment its cellular localization did not change. The Ang II-mediated decrease of the Na+/K+ATPase activity was inhibited by high doses of GF109203X but not by zeta-PS, thus indicating that such effect was not due to PKC-zeta activity. The treatment of cells with PKC-iota antisense oligodeoxynucleotides inhibited the effects of Ang II on the Na+/K+ATPase activity. Additionally, the effect of Ang II on Na+/K+ATPase activity was also blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002, and by the actin depolymerizing agents, cytochalasin D. In conclusion, in MCF-7 cells Ang II modulates the Na+/K+ATPase activity by both atypical PKC-zeta/-iota. The effects of Ang II are opposite depending upon the presence of the serum-sensitive PKC-iota, with the inhibitory effect possibly due to the redistribution of sodium pump from plasma membrane to the inactive intracellular pool.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources