Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;94(5):3228-48.
doi: 10.1152/jn.00028.2005. Epub 2005 May 11.

Dynamic circuitry for updating spatial representations. I. Behavioral evidence for interhemispheric transfer in the split-brain macaque

Collaborators, Affiliations
Free article

Dynamic circuitry for updating spatial representations. I. Behavioral evidence for interhemispheric transfer in the split-brain macaque

Rebecca A Berman et al. J Neurophysiol. 2005 Nov.
Free article

Abstract

Internal representations of the sensory world must be constantly adjusted to take movements into account. In the visual system, spatial updating provides a mechanism for maintaining a coherent map of salient locations as the eyes move. Little is known, however, about the pathways that produce updated spatial representations. In the present study, we asked whether direct cortico-cortical links are required for spatial updating. We addressed this question by investigating whether the forebrain commissures-the direct path between the two cortical hemispheres-are necessary for updating visual representations from one hemifield to the other. We assessed spatial updating in two split-brain monkeys using the double-step task, which involves saccades to two sequentially appearing targets. Accurate performance requires that the representation of the second target be updated to take the first saccade into account. We made two central discoveries regarding the pathways that underlie spatial updating. First, we found that split-brain monkeys exhibited a selective initial impairment on double-step sequences that required updating across visual hemifields. Second, and most surprisingly, these impairments were neither universal nor permanent: the monkeys were ultimately able to perform the across-hemifield sequences and, in some cases, this ability emerged rapidly. These findings indicate that direct cortical links provide the main substrate for updating visual representations, but they are not the sole substrate. Rather, a unified and stable representation of visual space is supported by a redundant cortico-subcortical network with a striking capacity for reorganization.

PubMed Disclaimer

Publication types

LinkOut - more resources