Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Aug 15;24(15):2281-98.
doi: 10.1002/sim.2109.

Significance testing for small microarray experiments

Affiliations
Comparative Study

Significance testing for small microarray experiments

Charles Kooperberg et al. Stat Med. .

Abstract

Which significance test is carried out when the number of repeats is small in microarray experiments can dramatically influence the results. When in two sample comparisons both conditions have fewer than, say, five repeats traditional test statistics require extreme results, before a gene is considered statistically significant differentially expressed after a multiple comparisons correction. In the literature many approaches to circumvent this problem have been proposed. Some of these proposals use (empirical) Bayes arguments to moderate the variance estimates for individual genes. Other proposals try to stabilize these variance estimate by combining groups of genes or similar experiments. In this paper we compare several of these approaches, both on data sets where both experimental conditions are the same, and thus few statistically significant differentially expressed genes should be identified, and on experiments where both conditions do differ. This allows us to identify which approaches are most powerful without identifying many false positives. We conclude that after balancing the numbers of false positives and true positives an empirical Bayes approach and an approach which combines experiments perform best. Standard t-tests are inferior and offer almost no power when the sample size is small.

PubMed Disclaimer

Similar articles

Cited by

Publication types