Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;25(8):1590-5.
doi: 10.1161/01.ATV.0000170136.71970.5f. Epub 2005 May 12.

PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress

Affiliations

PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress

Zsolt Bagi et al. Arterioscler Thromb Vasc Biol. 2005 Aug.

Abstract

Objective: In response to changes in wall shear stress (WSS) the vascular endothelium releases several factors, among others nitric oxide. On the basis of studies of endothelial cells in culture, suggesting that platelet endothelial cell adhesion molecule-1 (PECAM-1) is specifically involved in sensing and coupling high temporal gradients of fluid shear stress with activation of eNOS, we hypothesized that dilations of isolated skeletal muscle arterioles from PECAM-1 knockout mice (PECAM-KO) will be reduced to rapid increases in WSS elicited by increases in perfusate flow.

Methods and results: Small and large step increases in flow resulted in substantial dilations in arterioles of WT mice (45+/-4%), but they were markedly reduced in arterioles of PECAM-KO mice (22+/-5%). The initial slope of dilations, when WSS increased rapidly, was greater in vessels of WT than those of PECAM-KO mice (slopes: 0.378 and 0.094, respectively), whereas the second phase of dilations, when flow/shear stress was steady, was similar in the 2 groups (slopes: 0.085 and 0.094, respectively). Inhibition of eNOS significantly reduced the initial phase of dilations in arterioles from WT, but not from those of PECAM-KO mice. The calcium ionophore A23187 elicited similar NO-mediated dilation in both WT and PECAM-KO mice.

Conclusions: In isolated arterioles of PECAM-KO mice activation of eNOS and consequent dilation by agonists is maintained, but the dilation to high temporal gradients of wall shear stress elicited by increases in perfusate flow is reduced. Thus, we propose that PECAM-1 plays an important role in the ability of the endothelium to sense and couple high temporal gradients of wall shear stress to NO-mediated arteriolar dilation during sudden changes in blood flow in vivo.

PubMed Disclaimer

Publication types

MeSH terms