Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;27(6):637-46.
doi: 10.1002/bies.20236.

Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis

Affiliations

Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis

Jason H Moore et al. Bioessays. 2005 Jun.

Abstract

Epistasis plays an important role in the genetic architecture of common human diseases and can be viewed from two perspectives, biological and statistical, each derived from and leading to different assumptions and research strategies. Biological epistasis is the result of physical interactions among biomolecules within gene regulatory networks and biochemical pathways in an individual such that the effect of a gene on a phenotype is dependent on one or more other genes. In contrast, statistical epistasis is defined as deviation from additivity in a mathematical model summarizing the relationship between multilocus genotypes and phenotypic variation in a population. The goal of this essay is to review definitions and examples of biological and statistical epistasis and to explore the relationship between the two. Specifically, we present and discuss the following two questions in the context of human health and disease. First, when does statistical evidence of epistasis in human populations imply underlying biomolecular interactions in the etiology of disease? Second, when do biomolecular interactions produce patterns of statistical epistasis in human populations? Answers to these two reciprocal questions will provide an important framework for using genetic information to improve our ability to diagnose, prevent and treat common human diseases. We propose that systems biology will provide the necessary information for addressing these questions and that model systems such as bacteria, yeast and digital organisms will be a useful place to start.

PubMed Disclaimer

Publication types

LinkOut - more resources