Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun 15;282(2):361-73.
doi: 10.1016/j.ydbio.2005.03.031.

Gene knockout analysis of two gamma-tubulin isoforms in mice

Affiliations
Free article
Comparative Study

Gene knockout analysis of two gamma-tubulin isoforms in mice

Akiko Yuba-Kubo et al. Dev Biol. .
Free article

Abstract

Gamma-tubulin regulates the nucleation of microtubules, but knowledge of its functions in vivo is still fragmentary. Here, we report the identification of two closely related gamma-tubulin isoforms, TUBG1 and TUBG2, in mice, and the generation of TUBG1- and TUBG2-deficient mice. TUBG1 was expressed ubiquitously, whereas TUBG2 was primarily detected in the brain. The development of TUBG1-deficient (Tubg1-/-) embryos stopped at the morula/blastocyst stages due to a characteristic mitotic arrest: the mitotic spindle was highly disorganized, and disorganized spindles showed one or two pole-like foci of bundled MTs that were surrounded by condensed chromosomes. TUBG2 was expressed in blastocysts, but could not rescue the TUBG1 deficiency. By contrast, TUBG2-deficient (Tubg2-/-) mice were born, grew, and intercrossed normally. In the brain of wild-type mice, TUBG2 was expressed in approximately the same amount as TUBG1, but no histological abnormalities were found in the Tubg2-/- brain. These findings indicated that TUBG1 and TUBG2 are not functionally equivalent in vivo, that TUBG1 corresponds to conventional gamma-tubulin, and that TUBG2 may have some unidentified function in the brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources