Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun 30;1741(1-2):173-82.
doi: 10.1016/j.bbadis.2005.03.015.

Cardiac volume overload rapidly induces oxidative stress-mediated myocyte apoptosis and hypertrophy

Affiliations
Free article
Comparative Study

Cardiac volume overload rapidly induces oxidative stress-mediated myocyte apoptosis and hypertrophy

C Fiorillo et al. Biochim Biophys Acta. .
Free article

Abstract

Oxidative stress stimulates both growth and apoptosis in cardiac myocytes in vitro. We investigated the role of oxidative stress in the initial phases of cardiac remodeling induced in an animal model by volume overload. As plausible candidates for a connection between oxidative stress and cardiomyocyte apoptosis or hypertrophy, we explored the behaviour of two MAPKs, specifically JNK and ERK. At 48 h of overload, the greatest increase in oxidative stress coincided with a peak of cardiomyocyte apoptosis. This was possibly induced through the mitochondrial metabolism, as evidenced by the release of cytochrome c and a significant increase in the active forms of caspase-9 and -3, but not caspase-8. Oxidative stress markers significantly decreased at 96 h of overload, combined with a marked attenuation of apoptosis and the appearance of hypertrophy. The highest levels of JNK and the lowest levels of ERK phosphorylation were observed at 48 h of overload. Conversely, a sharp increase in ERK phosphorylation was detected at 96 h of overload coinciding with the hypertrophic response. Together these results show that oxidative stress is an early and transient event in myocardial volume overload. They suggest that oxidative stress mediates amplitude dependent apoptotic and hypertrophic responses in cardiomyocytes through the selective activation of, respectively, JNK and ERK.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources