Position-sensitive scanning fluorescence correlation spectroscopy
- PMID: 15894645
- PMCID: PMC1366613
- DOI: 10.1529/biophysj.105.060749
Position-sensitive scanning fluorescence correlation spectroscopy
Abstract
Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.
Figures








Similar articles
-
Measuring fast dynamics in solutions and cells with a laser scanning microscope.Biophys J. 2005 Aug;89(2):1317-27. doi: 10.1529/biophysj.105.062836. Epub 2005 May 20. Biophys J. 2005. PMID: 15908582 Free PMC article.
-
Spatial-temporal studies of membrane dynamics: scanning fluorescence correlation spectroscopy (SFCS).Biophys J. 2004 Aug;87(2):1260-7. doi: 10.1529/biophysj.103.036483. Biophys J. 2004. PMID: 15298928 Free PMC article.
-
Spatial fluorescence cross-correlation spectroscopy.Appl Opt. 2006 Feb 20;45(6):1225-35. doi: 10.1364/ao.45.001225. Appl Opt. 2006. PMID: 16523786
-
MRI temporal acceleration techniques.J Magn Reson Imaging. 2012 Sep;36(3):543-60. doi: 10.1002/jmri.23640. J Magn Reson Imaging. 2012. PMID: 22903655 Review.
-
Scanning fluorescence correlation spectroscopy comes full circle.Methods. 2018 May 1;140-141:52-61. doi: 10.1016/j.ymeth.2018.01.023. Epub 2018 Feb 7. Methods. 2018. PMID: 29408224 Review.
Cited by
-
Cellular response to heat shock studied by multiconfocal fluorescence correlation spectroscopy.Biophys J. 2012 Sep 19;103(6):1110-9. doi: 10.1016/j.bpj.2012.07.041. Biophys J. 2012. PMID: 22995483 Free PMC article.
-
Fluorescence correlation spectroscopy of finite-sized particles.Biophys J. 2008 Apr 1;94(7):2800-8. doi: 10.1529/biophysj.107.112789. Epub 2007 Dec 7. Biophys J. 2008. PMID: 18065475 Free PMC article.
-
Analysis of protein mobilities and interactions in living cells by multifocal fluorescence fluctuation microscopy.Eur Biophys J. 2009 Jul;38(6):813-28. doi: 10.1007/s00249-009-0499-9. Epub 2009 Jun 19. Eur Biophys J. 2009. PMID: 19543723
-
Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.Nat Chem. 2017 Nov;9(11):1118-1125. doi: 10.1038/nchem.2803. Epub 2017 Jun 26. Nat Chem. 2017. PMID: 29064502 Free PMC article.
-
Quantitative Brightness Analysis of Fluorescence Intensity Fluctuations in E. Coli.PLoS One. 2015 Jun 22;10(6):e0130063. doi: 10.1371/journal.pone.0130063. eCollection 2015. PLoS One. 2015. PMID: 26099032 Free PMC article.
References
-
- Elson, E. L., and D. Madge. 1974. Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers. 12:1–27.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources