Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 15;280(28):25960-72.
doi: 10.1074/jbc.M503742200. Epub 2005 May 13.

Ferredoxin-NADP+ reductase. Kinetics of electron transfer, transient intermediates, and catalytic activities studied by flash-absorption spectroscopy with isolated photosystem I and ferredoxin

Affiliations
Free article

Ferredoxin-NADP+ reductase. Kinetics of electron transfer, transient intermediates, and catalytic activities studied by flash-absorption spectroscopy with isolated photosystem I and ferredoxin

Nicolas Cassan et al. J Biol Chem. .
Free article

Abstract

The electron transfer cascade from photosystem I to NADP+ was studied at physiological pH by flash-absorption spectroscopy in a Synechocystis PCC6803 reconstituted system comprised of purified photosystem I, ferredoxin, and ferredoxin-NADP+ reductase. Experiments were conducted with a 34-kDa ferredoxin-NADP+ reductase homologous to the chloroplast enzyme and a 38-kDa N-terminal extended form. Small differences in kinetic and catalytic properties were found for these two forms, although the largest one has a 3-fold decreased affinity for ferredoxin. The dissociation rate of reduced ferredoxin from photosystem I (800 s(-1)) and the redox potential of the first reduction of ferredoxin-NADP+ reductase (-380 mV) were determined. In the absence of NADP+, differential absorption spectra support the existence of a high affinity complex between oxidized ferredoxin and semireduced ferredoxin-NADP+ reductase. An effective rate of 140-170 s(-1) was also measured for the second reduction of ferredoxin-NADP+ reductase, this process having a rate constant similar to that of the first reduction. In the presence of NADP+, the second-order rate constant for the first reduction of ferredoxin-NADP+ reductase was 20% slower than in its absence, in line with the existence of ternary complexes (ferredoxin-NADP+ reductase)-NADP+-ferredoxin. A single catalytic turnover was monitored, with 50% NADP+ being reduced in 8-10 ms using 1.6 microM photosystem I. In conditions of multiple turnover, we determined initial rates of 360-410 electrons per s and per ferredox-in-NADP+ reductase for the reoxidation of 3.5 microM photoreduced ferredoxin. Identical rates were found with photosystem I lacking the PsaE subunit and wild type photosystem I. This suggests that, in contrast with previous proposals, the PsaE subunit is not involved in NADP+ photoreduction.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources