Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun 1;69(11):1613-25.
doi: 10.1016/j.bcp.2005.03.012. Epub 2005 Apr 18.

Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism

Affiliations
Comparative Study

Dicoumarol relieves serum withdrawal-induced G0/1 blockade in HL-60 cells through a superoxide-dependent mechanism

Rosario I Bello et al. Biochem Pharmacol. .

Abstract

This work was set to study how dicoumarol affects the cell cycle in human myeloid leukemia HL-60 cells. Cells were accumulated in G0/1 after serum deprivation. However, when cells were treated with 5 microM dicoumarol in serum-free medium, a significant increment in the number of cells in S-phase was observed. Inhibition of G0/1 blockade was confirmed by the increase of thymidine incorporation, the phosphorylation of retinoblastoma protein, and the promotion of cell growth in long-term treatments in the absence of serum. Dicoumarol treatment increased superoxide levels, but did not affect peroxide. Increase of cellular superoxide was essential for inhibition of G0/1 blockade, since scavenging this reactive species with a cell-permeable form of SOD and the SOD mimetics 2-amino-3,5-dibromo-N-[trans-4-hydroxycyclohexyl]benzylamine (ambroxol, 100 microM) and copper[II]diisopropyl salicylate (CuDIPS, 10 microM) completely abolished the effect of dicoumarol. However, N-acetyl-cysteine, overexpression of Bcl-2 or a cell-permeable form of catalase were not effective. 5-Methoxy-1,2-dimethyl-3-[(4-nitrophenol)methyl]-indole-4,7-dione (ES936), a mechanism-based irreversible inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1), did not promote S phase entry, and dicoumarol still inhibited G0/1 blockade in the presence of ES936. We demonstrate that dicoumarol inhibits the normal blockade in G0/1 in HL-60 cells through a mechanism involving superoxide, but this effect is not dependent solely on the inhibition of the NQO1 catalytic activity. Our results send a precautionary message about use of dicoumarol to elucidate cellular processes involving oxidoreductases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources