Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May;66(9):991-9.
doi: 10.1016/j.phytochem.2005.03.017.

A comparison of two strategies to modify the hydroxylation of condensed tannin polymers in Lotus corniculatus L

Affiliations
Comparative Study

A comparison of two strategies to modify the hydroxylation of condensed tannin polymers in Lotus corniculatus L

Mark P Robbins et al. Phytochemistry. 2005 May.

Abstract

A full-length sense Antirrhinum majus dihydroflavonol reductase (DFR) sequence was introduced into birdsfoot trefoil (Lotus corniculatus L.) in experiments aimed at modifying condensed tannin content and polymer hydroxylation in a predictable manner. Analysis of transgenic plants indicated lines that showed enhanced tannin content in leaf and stem tissues. In contrast to previous data from root cultures, levels of propelargonidin units were not markedly elevated in lines with enhanced tannin content. RT-PCR analysis of four selected lines indicated a correlation between enhanced tannin content and expression of the introduced DFR transgene. Using a contrasting approach we introduced a flavonoid 3'5' hydroxylase (F3'5'H) sequence derived from Eustoma grandiflorum into Lotus root cultures. Expression of the transgene was associated with increased levels of condensed tannins and in this case there was also no alteration in polymer hydroxylation. These results suggest that additional mechanisms may exist that control the hydroxylation state of condensed tannins in this model species.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources