Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 15;80(6):869-76.
doi: 10.1002/jnr.20514.

Homocysteic acid induces intraneuronal accumulation of neurotoxic Abeta42: implications for the pathogenesis of Alzheimer's disease

Affiliations

Homocysteic acid induces intraneuronal accumulation of neurotoxic Abeta42: implications for the pathogenesis of Alzheimer's disease

Tohru Hasegawa et al. J Neurosci Res. .

Abstract

The causes of neuronal dysfunction and degeneration in Alzheimer's disease (AD) are not fully understood, but increased production of neurotoxic forms of amyloid beta-peptide-42 (Abeta42) seems of major importance. Large extracellular deposits of aggregated Abeta42 (plaques) is a diagnostic feature of AD, but Abeta42 may be particularly cytotoxic when it accumulates inside neurons. The factors that may promote the intracellular accumulation of Abeta42 in AD are unknown, but recent findings suggest that individuals with elevated homocysteine levels are at increased risk for AD. We show that homocysteic acid (HA), an oxidized metabolite of homocysteine, induces intraneuronal accumulation of a Abeta42 that is associated with cytotoxicity. The neurotoxicity of HA can be attenuated by an inhibitor of gamma-secretase, the enzyme activity that generates Abeta42, suggesting a key role for intracellular Abeta42 accumulation in the neurotoxic action of HA. Concentrations of HA in cerebrospinal fluid (CSF) were similar in AD and control subjects. CSF homocysteine levels were elevated significantly in AD patients, however, and homocysteine exacerbated HA-induced neurotoxicity, suggesting a role for HA in the pathogenic action of elevated homocysteine levels in AD. These findings suggest that the intracellular accumulation of Abeta42 plays a role in the neurotoxic action of HA, and suggest a potential therapeutic benefit of agents that modify the production and neurotoxic actions of HA and homocysteine.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources