Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;194(1):31-42.
doi: 10.1016/j.expneurol.2005.01.016.

Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response

Affiliations

Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response

D Champagne et al. Exp Neurol. 2005 Jul.

Abstract

This study investigated the effect of apolipoporotein E (apoE) deficiency on hippocampal reactive sprouting responses of the septohippocampal cholinergic (SHC) and commissural/associational fibers (C/A) following an electrolytic lesion of the entorhinal cortex (ECL), using apoE knockout (apoEKO) and age-matched control wild-type mice. Based on recent evidence suggesting that apoE plays a role in the modulation of glial inflammation, we also tested the hypothesis that the pattern of the astroglial response to ECL might be related to the defective reinnervation previously reported in apoEKO mice. Consistent with our hypothesis, we report a differential pattern of astroglial response that concurred with impairments in the sprouting of the SHC and corresponding synaptic replacement in apoEKO mice at 14 and 30 days post-lesion (DPL), a time range covering the onset of axonal/terminal sprouting to synaptogenesis. We also report a limited sprouting of the C/A fiber system in apoEKO relative to control mice at 30 DPL, a period of active dendritic remodeling. The results of the present study confirm and extend previous findings that apoEKO mice display impaired regenerative capacity in response to ECL and argue that in addition to the effect of apoE on lipid trafficking, apoE may also influence the astroglial response to damage, and that both of these effects account for the defective reinnervation observed in apoEKO mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources