Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 15;280(28):26508-16.
doi: 10.1074/jbc.M503789200. Epub 2005 May 17.

Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate

Affiliations
Free article

Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate

Guoli Wang et al. J Biol Chem. .
Free article

Abstract

Functional roles of seven hydrophobic residues on the interface between the actuator (A) and phosphorylation (P) domains of sarcoplasmic reticulum Ca2+-ATPase were explored by alanine and serine substitutions. The residues examined were Ile179/Leu180/Ile232 on the A domain, Val705/Val726 on the P domain, and Leu119/Tyr122 on the loop linking the A domain and M2 (the second transmembrane helix). These residues gather to form a hydrophobic cluster around Tyr122 in the crystal structures of Ca2+-ATPase in Ca2+-unbound E2 (unphosphorylated) and E2P (phosphorylated) states but are far apart in those of Ca2+-bound E1 (unphosphorylated) and E1P (phosphorylated) states. The substitution-effects were also compared with those of Ile235 on the A domain/M3 linker and those of T181GE of the A domain, since they are in the immediate vicinity of the Tyr122-cluster. All these substitutions almost completely inhibited ATPase activity without inhibiting Ca2+-activated E1P formation from ATP. Substitutions of Ile235 and T181GE blocked the E1P to E2P transition, whereas those in the Tyr122-cluster blocked the subsequent E2P hydrolysis. Substitutions of Ile235 and Glu183 also blocked EP hydrolysis. Results indicate that the Tyr122-cluster is formed during the E1P to E2P transition to configure the catalytic site and position Glu183 properly for hydrolyzing the acylphosphate. Ile235 on the A domain/M3 linker likely forms hydrophobic interactions with the A domain and thereby allowing the strain of this linker to be utilized for large motions of the A domain during these processes. The Tyr122-cluster, Ile235, and T181GE thus seem to have different roles and are critical in the successive events in processing phosphorylated intermediates to transport Ca2+.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources