Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 May;262(5 Pt 1):E583-90.
doi: 10.1152/ajpendo.1992.262.5.E583.

Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization

Affiliations

Trace element movement and oxidative stress in skeletal muscle atrophied by immobilization

H Kondo et al. Am J Physiol. 1992 May.

Abstract

The movements of trace elements and the level of oxidative stress in the soleus, a typical slow red muscle which, atrophied by immobilization, were investigated in designated intervals. Male Wistar rats (14 wk old) whose one ankle joints were immobilized in the extended position were killed after 4, 8, and 12 days. Fe, Zn, Mn, and Cu concentrations and the levels of thiobarbituric acid-reactive substance (TBARS) and glutathione were measured. The rate of atrophy increased rapidly until the 8th day and slowly after that. In whole muscle, Fe concentration kept increasing, and Zn and Mn increased temporarily. Their subcellular distributions also changed; especially, the Fe level of the microsomal fraction kept increasing and reached threefold at 12 days. Increased TBARS and glutathione disulfide and decreased total glutathione indicated the increased oxidative stress in atrophy, which might result from an increased Fe level, especially that of the microsomal fraction. Vitamin E injection lessened the rate of atrophy, which showed that oxidative stress accelerated muscle atrophy. This might be mediated by increased intracellular Ca. Also metallothionein was induced in muscle atrophy.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources