Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;24(5):522-7.
doi: 10.1016/j.annfar.2005.03.005. Epub 2005 Apr 20.

[Contribution of magnetic resonance spectroscopy in predicting severity and outcome in traumatic brain injury]

[Article in French]
Affiliations
Review

[Contribution of magnetic resonance spectroscopy in predicting severity and outcome in traumatic brain injury]

[Article in French]
J-F Payen et al. Ann Fr Anesth Reanim. 2005 May.

Abstract

Nuclear magnetic spectroscopy (MRS) is a useful method for noninvasively studying intracerebral metabolism. Proton MRS can identify markers of the neuronal viability (N-acetyl-aspartate, NAA), of the metabolism of cellular membranes (choline), of the cellular energy metabolism (creatine, lactate). In Phosphorus MRS, the peaks most readily identified are involved in the high-energy cellular metabolism (ATP, phosphocreatine, inorganic phosphate), and intracellular pH (pHi) can be determined using this method. MRS has been used in experimental models of traumatic brain injury (TBI), primarily to study the cellular metabolism and the relation between biochemical and histological changes after trauma. In trauma patients, significant changes in NAA, choline and pHi were found in both grey and white matter comparing with controls, and these alterations correlated with injury severity. Correlations have been reported between these biochemical changes (reduction in NAA, increase in choline) measured at 1 to 6 months after TBI and the clinical outcome of the patients. However, there are methodological issues which still impede to recommend MRS as a tool for predicting neurological outcome in the clinical setting.

PubMed Disclaimer

LinkOut - more resources