Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 15;341(2):361-8.
doi: 10.1016/j.ab.2005.02.024.

Agonist-induced calcium response in single human platelets assayed in a microfluidic device

Affiliations

Agonist-induced calcium response in single human platelets assayed in a microfluidic device

Louie Tran et al. Anal Biochem. .

Abstract

To facilitate drug discovery directed toward platelet-specific targets, we developed a platelet isolation and fluorophore-loading method that yields functionally responsive platelets in which we were able to detect agonist-induced calcium flux using a microfluidics-based screening platform. The platelet preparation protocol was designed to minimize preparation-induced platelet activation and to optimize signal strength. Measurement of platelet activation, as monitored by ratiometric determination of agonist-induced calcium flux in fluor-loaded human platelets, was optimized in a macrosample cuvette format in preparation for detection in a microfluidic chip-based assay. For the microfluidic device used in these studies, a cell density of 1 to 2 x 10(6) platelets per milliliter and a nominal flow rate of 5 to 10 nl per second provided optimal event resolution of 5 to 20 platelets traversing the detection volume per unit time. Platelets responded in a dose-dependent manner to adenosine diphosphate and protease-activating peptide (PAR) 1 thrombin receptor-activating peptide (TRAP). The work presented here constitutes proof-of-principle experiments demonstrating the enabling application of a microfluidic device to conduct high-throughput signaling studies and drug discovery screening against human platelet targets.

PubMed Disclaimer

MeSH terms

LinkOut - more resources