Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;289(3):H1184-90.
doi: 10.1152/ajpheart.00276.2005. Epub 2005 May 20.

Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury

Affiliations
Free article

Heat shock protein modulation of KATP and KCa channel cerebrovasodilation after brain injury

William M Armstead et al. Am J Physiol Heart Circ Physiol. 2005 Sep.
Free article

Abstract

Fluid percussion brain injury (FPI) impairs pial artery dilation to activators of the ATP-sensitive (K(ATP)) and calcium-activated (K(Ca)) K(+) channels. This study investigated the role of heat shock protein (HSP) in the modulation of K(+) channel-induced pial artery dilation after FPI in newborn pigs equipped with a closed cranial window. Under nonbrain injury conditions, topical coadministration of exogenous HSP-27 (1 mug/ml) blunted dilation to cromakalim, CGRP, and NS-1619 (10(-8) and 10(-6) M; cromakalim and CGRP are K(ATP) agonists and NS-1619 is a K(Ca) agonist). In contrast, coadministration of exogenous HSP-70 (1 mug/ml) potentiated dilation to cromakalim, CGRP, and NS-1619. FPI increased the cerebrospinal fluid (CSF) concentration of HSP-27 from 0.051 +/- 0.012 to 0.113 +/- 0.035 ng/ml but decreased the CSF concentration of HSP-70 from 50.42 +/- 8.96 to 30.9 +/- 9.9 ng/ml at 1 h postinsult. Pretreatment with topical exogenous HSP-70 (1 mug/ml) before FPI fully blocked injury-induced impairment of cromakalim and CGRP dilation and partially blocked injury-induced impairment of dilation to NS-1619. These data indicate that HSP-27 and HSP-70 contribute to modulation of K(+) channel-induced pial artery dilation. These data suggest that HSP-70 is an endogenous protectant of which its actions may be unmasked and/or potentiated with exogenous administration before brain injury.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources