Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;184(6):1744-8.
doi: 10.2214/ajr.184.6.01841744.

Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence

Affiliations

Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence

Marius R Schmid et al. AJR Am J Roentgenol. 2005 Jun.

Abstract

Objective: We sought to evaluate the diagnostic value of a 2D multiple-echo data image combination (MEDIC) MRI sequence in the detection of patellar cartilage defects.

Materials and methods: Our study included 52 consecutive patients who had knee surgery within 4 months of undergoing an MRI examination including an axial 2D MEDIC (TR/TE, 884/26; flip angle, 30 degrees ) sequence. Cartilage was surgically graded on a 5-point scale: 0, normal; 1, softening or swelling; 2, partial thickness defect; 3, fissuring to the level of the subchondral bone; or 4, exposed subchondral bone. Cartilage was graded on MRI according to a scale that was almost identical to the surgical scale except that grade 1 lesions were defined as signal alteration or swelling of cartilage. Two blinded reviewers independently analyzed patellar cartilage. Sensitivity, specificity, accuracy, and weighted kappa values for interobserver variability were calculated.

Results: Low-grade cartilage lesions predominated in our study group. When grade 2 or higher was considered the threshold for relevance, the sensitivity, specificity, and accuracy for the MEDIC sequence was as high as 79%, 82%, and 81%, respectively. Increasing the threshold of relevance to grade 3 increased the sensitivity, specificity, and accuracy to as high as 83%, 91%, and 90%, respectively. Interobserver agreement for the MEDIC sequence was good (weighted kappa = 0.68).

Conclusion: The 2D MEDIC sequence performs comparably to previously described sequences optimized for cartilage imaging such as the 3D double-echo steady-state or 3D spoiled gradient-recalled sequences with good interobserver agreement, high sensitivity, and excellent specificity for revealing low- to intermediate-degree cartilage defects.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources