Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 May 31;44(21):7864-70.
doi: 10.1021/bi047941z.

Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site

Affiliations
Comparative Study

Model for general acid-base catalysis by the hammerhead ribozyme: pH-activity relationships of G8 and G12 variants at the putative active site

Joonhee Han et al. Biochemistry. .

Abstract

We have used nucleobase substitution and kinetic analysis to test the hypothesis that hammerhead catalysis occurs by a general acid-base mechanism, in which nucleobases are directly involved in deprotonation of the attacking 2'-hydroxyl group and protonation of the 5'-oxygen that serves as the leaving group in the cleavage reaction. We demonstrate that simultaneous substitution of two important nucleobases, G8 and G12, with 2,6-diaminopurine shifts the pH optimum of the cleavage reaction from greater than 9.5 to approximately 6.8 in two different hammerhead constructs. Controls involving substitution with other nucleobases and combinations of nucleobases at G5, G8, and/or G12 do not show this behavior. The observed changes in the pH-rate behavior are consistent with a mechanism in which N1 protonation-deprotonation events of guanine or 2,6-diaminopurine at positions 8 and 12 are essential for catalysis. Further support for the participation of G8 and G12 comes from photochemical cross-linking experiments, which show that G8 and G12 can stack upon the two substrate nucleobases at the reactive linkage, G(or U)1.1 and C17 (Heckman, J. E., Lambert, D., and Burke, J. M. (2005) Photocrosslinking detects a compact active structure of the hammerhead ribozyme, Biochemistry 44, 4148-4156). Together, these results support a model in which the hammerhead undergoes a transient conformational change into a catalytically active structure, in which stacking of G8 and G12 upon the nucleobases spanning the cleavage site provides an appropriate architecture for general acid-base catalysis. The hammerhead and hairpin ribozymes may share similarities in the organization of their active sites and their catalytic mechanism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources