Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 1;127(21):7721-8.
doi: 10.1021/ja042870c.

Nitric oxide interaction with cytochrome c' and its relevance to guanylate cyclase. Why does the iron histidine bond break?

Affiliations

Nitric oxide interaction with cytochrome c' and its relevance to guanylate cyclase. Why does the iron histidine bond break?

Marcelo A Martí et al. J Am Chem Soc. .

Abstract

Soluble guanylate cyclase (sGC), the mammalian receptor for nitric oxide (NO), is a heme protein with a histidine as the proximal ligand. Formation of a five-coordinate heme-NO complex with the associated Fe-His bond cleavage is believed to trigger a conformational change that activates the enzyme and transduces the NO signal. Cytochrome c' (cyt c') is a protobacteria heme protein that has several similarities with sGC, including the ability to form a five-coordinate NO adduct and the fact that it does not bind oxygen. Recent crystallographic characterization of cyt c' from Alcaligenes xylosoxidans (AXCP) has yielded the discovery that exogenous ligands are able to bind to the Fe center from either side of the porphyrin plane. In this paper, we explore the molecular basis of the NO interaction with AXCP using hybrid quantum-classical simulation techniques. Our results suggest that Fe-His bond breaking depends not only on the iron-histidine bond strength but also on the existence of a local minimum conformation of the protein with the histidine away from the iron. We also show that AXCP is a useful paradigm for NO interaction with heme proteins, particularly regarding the activation/deactivation mechanism of sGC. The results presented here fully support a recently proposed model of sGC activation in which NO is not only the iron ligand but also catalyzes the activation step.

PubMed Disclaimer

Publication types

LinkOut - more resources