Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 1;66(3):454-61.
doi: 10.1016/j.cardiores.2005.02.004. Epub 2005 Mar 3.

Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure

Affiliations

Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure

Vincenzo Lionetti et al. Cardiovasc Res. .

Abstract

Objective: Experimental evidence suggests that modulation of myocardial substrate metabolism can markedly affect the progression of chronic heart failure (HF). We tested whether the inhibition of carnitine palmitoyl transferase-I (CPT-I), the enzyme regulating mitochondrial fatty acid oxidation, slows left ventricular remodeling and deterioration of function in pacing-induced HF.

Methods: Normal dogs (n=9) were compared to untreated dogs with pacing-induced HF (n=9) and HF dogs treated with 65 mg/kg/day of oxfenicine (HF+Oxf, n=9), a CPT-I inhibitor.

Results: HF+Oxf reached terminal failure (LV end-diastolic pressure=25 mm Hg) 6 days later than untreated HF (P<0.05). At 28 days of pacing, hemodynamic alterations and LV dilation were significantly attenuated and the 25% decrease in LV wall thickness was completely prevented in HF+Oxf vs. untreated HF, as was the activation of matrix metalloproteinase-2 and -9, markers of tissue remodeling. Oxfenicine also prevented HF-induced transcriptional down-regulation of CPT-I, medium chain acyl-CoA dehydrogenase, GAPDH and citrate synthase, key enzymes of cardiac energy metabolism. In addition, mRNA, but not protein levels of the nuclear receptor peroxisome proliferator-activated receptor-alpha were reduced in untreated HF, while they did not change significantly in HF+Oxf, as compared to control.

Conclusions: CPT-I inhibition early in the development of HF prevented LV wall thinning and delayed the time to end-stage failure. While these results are limited to an experimental model of disease, they nevertheless suggest that CPT-I inhibition might be effective for slowing the progression of clinical HF.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms