Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;86(Pt 6):1589-1596.
doi: 10.1099/vir.0.80904-0.

Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model

Affiliations

Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model

Nathan W Bartlett et al. J Gen Virol. 2005 Jun.

Abstract

Human interferon lambdas (IFN-lambdas) (type III IFNs) exhibit antiviral activity in vitro by binding to a receptor complex distinct from that used by type I and type II IFNs, and subsequent signalling through the Janus kinase signal transducers and activators of transcription (STAT) pathway. However, evidence for a function of type III IFNs during virus infection in vivo is lacking. Here, the expression of murine IFN-lambdas by recombinant vaccinia virus (VACV) is described and these proteins are shown to have potent antiviral activity in vivo. VACV expressing murine IFN-lambda2 (vIFN-lambda2) and IFN-lambda3 (vIFN-lambda3) showed normal growth in tissue culture and expressed N-glycosylated IFN-lambda in infected cell extracts and culture supernatants. The role that murine IFN-lambdas play during virus infection was assessed in two different mouse models. vIFN-lambda2 and vIFN-lambda3 were avirulent for mice infected intranasally and induced no signs of illness or weight loss, in contrast to control viruses. Attenuation of vIFN-lambda2 was associated with increases in lymphocytes in bronchial alveolar lavages and CD4+ T cells in total-lung lymphocyte preparations. In addition, vIFN-lambda2 was cleared more rapidly from infected lungs and, in contrast to control viruses, did not disseminate to the brain. Expression of IFN-lambda2 also attenuated VACV in an intradermal-infection model, characterized by a delay in lesion onset and reduced lesion size. Thus, by characterizing murine IFN-lambdas within a mouse infection model, the potent antiviral and immunostimulatory activity of IFN-lambdas in response to poxvirus infection has been demonstrated.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources