Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;20(2):574-82.
doi: 10.1016/j.nbd.2005.04.012.

Apolipoprotein D is a component of compact but not diffuse amyloid-beta plaques in Alzheimer's disease temporal cortex

Affiliations

Apolipoprotein D is a component of compact but not diffuse amyloid-beta plaques in Alzheimer's disease temporal cortex

Purnima P Desai et al. Neurobiol Dis. 2005 Nov.

Abstract

Apolipoprotein D (apoD) is elevated in Alzheimer's disease (AD) cortex, localizing to cells, blood vessels, and neuropil deposits (plaques). The role of apoD in AD pathology and the extent of its co-distribution with diffuse (amorphous) and compact (dense fibrillar) amyloid-beta (Abeta) plaques are currently unclear. To address this issue, we combined apoD and Abeta immunohistochemistry with ThioS/X-34 staining of the beta-pleated sheet protein conformation in temporal cortex from 36 AD patients and 12 non-demented controls. ApoD-immunoreactive, Abeta-immunoreactive, and ThioS/X-34-stained plaques were detected exclusively in AD tissue. Dual-immunolabeling showed that 63% of Abeta plaques co-localized apoD. All apoD plaques contained Abeta protein and ThioS/X-34 fluorescence. Compared to controls, AD cases showed elevated vascular and intracellular apoD immunostaining which localized primarily to cells clustered within plaques and around large blood vessels. ApoD-immunoreactive cells within plaques morphologically matched MHC-II- and CD-68-immunoreactive microglia, and did not contain the astrocytic marker GFAP, which labeled a subset of apoD-immunoreactive cells surrounding plaques. These data suggest that neuropil deposits of apoD localize only to a subset of Abeta plaques, which contain compact aggregates of fibrillar Abeta. Elevated apoD in AD brain may influence Abeta aggregation, or facilitate phagocytosis and transport of Abeta fibrils from plaques to cerebral vasculature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources