Global topology analysis of the Escherichia coli inner membrane proteome
- PMID: 15919996
- DOI: 10.1126/science.1109730
Global topology analysis of the Escherichia coli inner membrane proteome
Abstract
The protein complement of cellular membranes is notoriously resistant to standard proteomic analysis and structural studies. As a result, membrane proteomes remain ill-defined. Here, we report a global topology analysis of the Escherichia coli inner membrane proteome. Using C-terminal tagging with the alkaline phosphatase and green fluorescent protein, we established the periplasmic or cytoplasmic locations of the C termini for 601 inner membrane proteins. By constraining a topology prediction algorithm with this data, we derived high-quality topology models for the 601 proteins, providing a firm foundation for future functional studies of this and other membrane proteomes. We also estimated the overexpression potential for 397 green fluorescent protein fusions; the results suggest that a large fraction of all inner membrane proteins can be produced in sufficient quantities for biochemical and structural work.
Similar articles
-
Experimentally based topology models for E. coli inner membrane proteins.Protein Sci. 2004 Apr;13(4):937-45. doi: 10.1110/ps.03553804. Protein Sci. 2004. PMID: 15044727 Free PMC article.
-
Experimentally constrained topology models for 51,208 bacterial inner membrane proteins.J Mol Biol. 2005 Sep 23;352(3):489-94. doi: 10.1016/j.jmb.2005.07.053. J Mol Biol. 2005. PMID: 16120447
-
Exploring the inner membrane proteome of Escherichia coli: which proteins are eluding detection and why?Trends Microbiol. 2009 Oct;17(10):444-9. doi: 10.1016/j.tim.2009.07.005. Epub 2009 Sep 16. Trends Microbiol. 2009. PMID: 19766000
-
Quality control of cytoplasmic membrane proteins in Escherichia coli.J Biochem. 2009 Oct;146(4):449-54. doi: 10.1093/jb/mvp071. Epub 2009 May 19. J Biochem. 2009. PMID: 19454621 Review.
-
Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis.Biochim Biophys Acta. 2008 Sep;1778(9):1698-713. doi: 10.1016/j.bbamem.2007.07.020. Epub 2007 Aug 11. Biochim Biophys Acta. 2008. PMID: 17904518 Review.
Cited by
-
Topology based identification and comprehensive classification of four-transmembrane helix containing proteins (4TMs) in the human genome.BMC Genomics. 2016 Mar 31;17:268. doi: 10.1186/s12864-016-2592-7. BMC Genomics. 2016. PMID: 27030248 Free PMC article.
-
Escherichia coli strains with precise domain deletions in the ribonuclease RNase E can achieve greatly enhanced levels of membrane protein production.Protein Sci. 2024 Feb;33(2):e4864. doi: 10.1002/pro.4864. Protein Sci. 2024. PMID: 38073126 Free PMC article.
-
Large-scale identification of membrane proteins with properties favorable for crystallization.Protein Sci. 2015 Nov;24(11):1756-63. doi: 10.1002/pro.2766. Epub 2015 Aug 27. Protein Sci. 2015. PMID: 26257393 Free PMC article.
-
Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae.Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11148-53. doi: 10.1073/pnas.0604078103. Epub 2006 Jul 17. Proc Natl Acad Sci U S A. 2006. PMID: 16847257 Free PMC article.
-
A statistical model for improved membrane protein expression using sequence-derived features.J Biol Chem. 2018 Mar 30;293(13):4913-4927. doi: 10.1074/jbc.RA117.001052. Epub 2018 Jan 29. J Biol Chem. 2018. PMID: 29378850 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials