Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jun:37 Suppl:S5-10.
doi: 10.1038/ng1558.

Toward genome-wide SNP genotyping

Affiliations
Comparative Study

Toward genome-wide SNP genotyping

Ann-Christine Syvänen. Nat Genet. 2005 Jun.

Abstract

Genome-wide association studies with SNP markers are expected to allow identification of genes that underlie complex disorders. Hundreds of thousands of SNP markers will be required for comprehensive genome-wide association studies. The development of microarray-based methods for SNP genotyping on this scale remains a demanding task, despite many recent advances in technology for the production of high-density microarrays. A key technical obstacle is the PCR amplification step, which is required to reduce the complexity of and gain sufficient sensitivity for genotyping SNPs in large, diploid genomes. The multiplexing level that can be achieved in PCR does not match that of current microarray-based methods, making PCR the limiting step in the assays. Highly multiplexed microarray systems for SNP genotyping have recently been developed by combining well-known reaction principles for DNA amplification and SNP genotyping in clever ways. These new methods offer the potential of genome-wide SNP mapping of genes involved in complex diseases in the foreseeable future, provided that issues related to selection of the optimal SNP markers, sample throughput and the cost of the assays can be addressed.

PubMed Disclaimer

Publication types

LinkOut - more resources