Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;2(6):624-31.
doi: 10.1016/j.hrthm.2005.02.012.

Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation

Affiliations

Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation

Eugene Patterson et al. Heart Rhythm. 2005 Jun.

Abstract

Background: Rapid firing within pulmonary vein sleeves frequently initiates atrial fibrillation. The role of the autonomic nervous system in facilitating spontaneous firing is unknown.

Objectives: The purpose of this study was to determine if autonomic nerve stimulation within canine atrium and pulmonary vein sleeves initiates arrhythmia formation.

Methods: Extracellular bipolar and intracellular microelectrode recordings were obtained from isolated superfused canine pulmonary veins (N = 28) and right atrium (N = 5) during local autonomic nerve stimulation.

Results: Autonomic nerve stimulation decreased pulmonary vein sleeve action potential duration (APD90 = 160 +/- 17 to 92 +/- 24 ms; P < .01) and initiated rapid (782 +/- 158 bpm) firing from early afterdepolarizations in 22 of 28 pulmonary vein preparations. The initial spontaneous beat had a coupling interval of 97 +/- 26 ms. Failure to induce arrhythmia was associated with a failure to shorten APD90 (151 +/- 18 to 142 +/- 8 ms; P = .39). Muscarinic receptor blockade (atropine: 3.2 x 10(-8) M) prevented APD90 shortening in 8 of 8 preparations and suppressed firing in 6 of 8 preparations, whereas beta1-adrenergic receptor blockade (atenolol: 3.2 x 10(-8) M) suppressed firing in 8 of 8 preparations. Suppression of the Ca transient with ryanodine (10(-5) M) completely suppressed firing in 6 of 6 preparations. Inhibition of forward Na/Ca exchange by a transient increase in [Ca+2]o completely suppressed firing in 4 of 6 preparations. The same stimulus trains produce atropine-suppressed APD90 shortening in superfused right atrial free wall but fail to produce triggered arrhythmia.

Conclusions: The data demonstrate triggered firing within canine pulmonary veins with combined parasympathetic and sympathetic nerve stimulation. Both an enhanced Ca transient and increased Na/Ca exchange may be required for arrhythmia formation.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources