Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;33(4):257-66.
doi: 10.1016/j.jcv.2005.04.002.

GB virus C: insights into co-infection

Affiliations
Review

GB virus C: insights into co-infection

Mark D Berzsenyi et al. J Clin Virol. 2005 Aug.

Abstract

GB virus C (GBV-C) is a single stranded positive sense RNA virus, which is a member of the Flaviviridae. It has a close sequence homology and genomic organisation to hepatitis C virus (HCV). However, unlike HCV it is not hepatotrophic. GBV-C replicates within cells of the haemopoietic lineage, in particular lymphocytes. No disease has been associated with GBV-C infection but co-infection with human immunodeficiency virus (HIV) leads to improved morbidity and mortality for the HIV infected individual and slows progression to acquired immunodeficiency syndrome. This potential benefit of GBV-C has been demonstrated in the pre and post highly active anti-retroviral treatment (HAART) eras. GBV-C has been found to decrease HIV replication in in vitro models. The mechanism of the beneficial effect of GBV-C appears to be mediated by alterations in the cellular immune response, the details of which remain unclear. Despite this, there continues to be controversy regarding the influence of GBV-C on HIV as several reports have questioned the beneficial effect. GBV-C does not appear to influence liver related disease in subjects co-infected with HCV or hepatitis B virus (HBV). Combination of HIV and HCV leads to accelerated liver disease. The influence of GBV-C in this situation is yet to be determined. Elucidation of the putative protective effect of GBV-C in HIV co-infection could potentially identify novel targets for anti-HIV therapeutics and lead to the development of disease modifying vaccines.

PubMed Disclaimer

MeSH terms

LinkOut - more resources