Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 7;44(22):7929-35.
doi: 10.1021/bi0500271.

Identification of a NPXY motif in growth factor receptor-bound protein 14 (Grb14) and its interaction with the phosphotyrosine-binding (PTB) domain of IRS-1

Affiliations

Identification of a NPXY motif in growth factor receptor-bound protein 14 (Grb14) and its interaction with the phosphotyrosine-binding (PTB) domain of IRS-1

Raju V S Rajala et al. Biochemistry. .

Abstract

Recently we have shown that insulin fails to induce the phosphorylation of IRS-1 in the retina [Rajala et al. (2004) Biochemistry 43, 5637-5650], even though there is widespread expression of IRS-1 throughout the retina. These results suggest the expression of tissue-specific regulators in the retina. Yeast two-hybrid screening of a bovine retinal cDNA library with the cytoplasmic domain of retinal insulin receptor identified a novel member of the Grb7 gene family, Grb14. Phosphorylation prediction software indicated 6 out of 18 tyrosine residues were most likely to be phosphorylated. Out of six tyrosine phosphorylation sites, one of the tyrosine residues in Grb14 is present in a conserved sequence motif, FXNPXY. The NPXY motifs are recognized by proteins containing a domain known as phosphotyrosine-binding (PTB) or phosphotyrosine-interacting domain (PID). The biological function of the PTB domain is to drive recruitment of signaling adapters such as IRS-1 or Shc to NPXpY (pY stands for phosphotyrosine) on activated receptor tyrosine kinases. We have made a novel finding that the PTB domain of IRS-1 binds to the NPXY motif of Grb14 in a phosphorylation-independent manner. In addition, Grb14-IRS-1 complexes are detected in lysates prepared from retina tissues. We suggest that the Grb14 NPXY motif could be acting as a dominant negative for IRS-1 functions in the retina, and this hypothesis is consistent with the recent study that Grb14-deficient mice exhibit enhanced IRS-1 phosphorylation and activation of protein kinase B. This is the first report describing the presence of the NPXY motif in Grb14 and binding of the PTB domain of IRS-1 in a phosphorylation-independent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources