Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug;107(2):212-21.
doi: 10.1016/j.pharmthera.2005.03.002.

Chemical complementation: a definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets

Affiliations
Review

Chemical complementation: a definitive phenotypic strategy for identifying small molecule inhibitors of elusive cellular targets

Andreas Vogt et al. Pharmacol Ther. 2005 Aug.

Abstract

Forward Pharmacology seeks to identify small or large molecules that modulate a normal or abnormal biological process in living cells or whole organisms and historically has been responsible for the discovery of many clinically used drugs. Forward Pharmacology approaches have become particularly attractive because advances in combinatorial chemistry and laboratory automation have made it possible to generate and interrogate large compound collections in a short period of time. Because many drug discovery efforts are now directed against specific biochemical targets, however, the utility of Forward Pharmacology is limited by the fact that assays to investigate compounds in biological systems are often phenotypic rather than target specific. We discuss here a novel strategy to discover target-based small molecules in intact cells using contemporary Forward Pharmacology in cells with specific genetic manipulations. The method, which we have termed "chemical complementation", is defined as the ability of small molecules to reverse a genetically induced phenotypic change in intact cells. Chemical complementation represents an extension of the commonly used genetic complementation approach, where cDNA libraries are used to investigate the function of genes based on their ability to rescue a specific genetic defect. We present examples of how chemical complementation has been used to identify and credential cell-active, small molecule inhibitors of 2 dual-specificity phosphatases, Cdc25A and MKP-3, which heretofore have eluded small molecule drug discovery efforts.

PubMed Disclaimer

Similar articles

Cited by

Substances