Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 12;280(32):28885-93.
doi: 10.1074/jbc.M413434200. Epub 2005 May 31.

Role of upstream stimulatory factor phosphorylation in the regulation of the prostaglandin G/H synthase-2 promoter in granulosa cells

Affiliations
Free article

Role of upstream stimulatory factor phosphorylation in the regulation of the prostaglandin G/H synthase-2 promoter in granulosa cells

Khampoune Sayasith et al. J Biol Chem. .
Free article

Abstract

To investigate the role of USF phosphorylation in the regulation of the PGHS-2 promoter in granulosa cells, promoter activity assays were performed in primary cultures of bovine granulosa cells transfected with the chimeric PGHS-2 promoter/luciferase (LUC) construct -149/-2PGHS-2.LUC. Transfections were done in the absence or presence of forskolin; the protein kinase A (PKA) inhibitor H-89; or an expression vector encoding USF1, USF2, the catalytic subunit of PKA (cPKA), or a PKA inhibitor protein (PKI). Electrophoretic mobility shift assays were performed to study USF/DNA interactions using granulosa cell nuclear extracts and a 32P-labeled proximal PGHS-2 promoter fragment containing the E-box element. The results show that forskolin stimulation and cPKA overexpression caused a marked and significant increase in USF-dependent DNA binding and PGHS-2 promoter activities (p < 0.05). In contrast, both activities were decreased by H-89 treatment or PKI overexpression. Reverse transcription-PCR analyses revealed that these treatments had similar effects on endogenous PGHS-2 mRNA levels in granulosa cells. Cotransfection studies with a USF2 mutant lacking N-terminal activation domains (U2Delta1-220) repressed forskolin-, cPKA-, and USF-dependent PGHS-2 promoter activities. Electrophoretic mobility shift assays showed that U2Delta1-220 was able to compete with full-length USF proteins and to saturate the E-box element. Immunoprecipitation/Western blot analyses revealed an increase in the levels of phosphorylated USF1 and USF2 after forskolin treatment, whereas chromatin immunoprecipitation assays showed that binding of USF proteins to the endogenous PGHS-2 promoter was stimulated by forskolin. Site-directed mutagenesis of a consensus PKA phosphorylation site within USF proteins abolished their transactivating capacity. Collectively, these results characterize the role of USF phosphorylation in PGHS-2 expression and identify the phosphorylation-dependent increase in USF binding to the E-box as a putative molecular basis for the increase in PGHS-2 promoter transactivation in granulosa cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources