Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 1;65(11):4716-27.
doi: 10.1158/0008-5472.CAN-04-4196.

Antivascular therapy of human follicular thyroid cancer experimental bone metastasis by blockade of epidermal growth factor receptor and vascular growth factor receptor phosphorylation

Affiliations

Antivascular therapy of human follicular thyroid cancer experimental bone metastasis by blockade of epidermal growth factor receptor and vascular growth factor receptor phosphorylation

Maher Nabil Younes et al. Cancer Res. .

Abstract

Patients suffering from bone metastases of follicular thyroid carcinoma (FTC) have a poor prognosis because of the lack of effective treatment strategies. The overexpression of epidermal growth factor receptor (EGFR) associated with increased vascularity has been implicated in the pathogenesis of FTC and subsequent bone metastases. We hypothesized that inhibiting the phosphorylation of the EGFR and vascular endothelial growth factor receptor (VEGFR) by AEE788, a dual tyrosine kinase inhibitor of EGFR and VEGFR, in combination with paclitaxel would inhibit experimental FTC bone lesions and preserve bone structure. We tested this hypothesis using the human WRO FTC cell line. In culture, AEE788 inhibited the EGF-mediated phosphorylation of EGFR, VEGFR2, mitogen-activated protein kinase, and Akt in culture. AEE788, alone and in combination with paclitaxel, inhibited cell growth and induced apoptosis. When WRO cells were injected into the tibia of nude mice, tumor and endothelial cells within the lesions expressed phosphorylated EGFR, VEGFR, Akt, and mitogen-activated protein kinase that were inhibited by the oral administration of AEE788. Therapy consisting of orally given AEE788 and i.p. injected paclitaxel induced a high level of apoptosis in tumor-associated endothelial cells and tumor cells with the inhibition of tumor growth in the bone and the preservation of bone structure. Collectively, these data show that blocking the phosphorylation of EGFR and VEGFR with AEE788 combined with paclitaxel can significantly inhibit experimental human FTC in the bone of nude mice.

PubMed Disclaimer

Publication types

MeSH terms