Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jul;14(4):325-9.
doi: 10.1097/01.mnh.0000172717.49476.80.

Role of fibroblast growth factor 23 in health and in chronic kidney disease

Affiliations
Review

Role of fibroblast growth factor 23 in health and in chronic kidney disease

Masafumi Fukagawa et al. Curr Opin Nephrol Hypertens. 2005 Jul.

Abstract

Purpose of review: This review summarizes the molecular properties and biological roles of a new phosphaturic factor, fibroblast growth factor 23 (FGF23). Significant roles of FGF23 are discussed, especially in terms of its effects on the kidney, the main target organ.

Recent findings: FGF 23 is a recently discovered phosphaturic factor. Several animal experiments including overexpression or ablation of the FGF23 gene have recently revealed the significant effects of this factor on phosphate excretion and on vitamin D synthesis in the kidney. Although FGF23 was originally identified as a factor responsible for several hypophosphatemic disorders, recent data indicate its role in the physiological regulation of phosphate homeostasis. In chronic kidney disease, FGF23 plays a crucial role in the pathogenesis of secondary hyperparathyroidism. Effects of FGF23 on other organs including bone and intestine remain to be elucidated.

Summary: FGF23 is a physiological regulator of phosphate homeostasis. Excessive activity of FGF23 with normal renal function results in hypophosphatemia, low 1,25-dihydroxyvitamin D levels, and rickets/osteomalacia. By contrast, excessive FGF23 activity suppresses 1,25-dihydroxyvitamin D synthesis, but may not be sufficient to excrete the phosphate load appropriately with deteriorating renal function, both of which contribute to the development of hyperparathyroidism.

PubMed Disclaimer

Publication types