Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 8;97(1):16-24.
doi: 10.1161/01.RES.0000172568.49367.f8. Epub 2005 Jun 2.

Equilibrative nucleoside transporter 1 expression is downregulated by hypoxia in human umbilical vein endothelium

Affiliations
Free article

Equilibrative nucleoside transporter 1 expression is downregulated by hypoxia in human umbilical vein endothelium

Paola Casanello et al. Circ Res. .
Free article

Abstract

Reduced oxygen level (hypoxia) induces endothelial dysfunction and release of the endogenous nucleoside adenosine. Human umbilical vein endothelium (HUVEC) function in an environment with 3% to 5% O2 and exhibit efficient adenosine membrane transport via human equilibrative nucleoside transporters 1 (hENT1). We studied whether adenosine transport and hENT1 expression are altered by hypoxia in HUVEC. Hypoxia (0 to 24 hours, 2% and 1% O2) reduced maximal hENT1-adenosine transport velocity (V(max)) and maximal nitrobenzylthionosine (NBMPR, a high-affinity hENT1 protein ligand) binding, but increased extracellular adenosine concentration. Hypoxia also reduced hENT1 protein and mRNA levels, effects unaltered by N(omega)-nitro-l-arginine methyl ester (l-NAME, nitric oxide synthase [NOS] inhibitor) or PD-98059 (inhibitor of mitogen-activated protein kinase kinase 1 and 2 [MEK1/2]). Hypoxia reduced endothelial NOS (eNOS) activity and eNOS phosphorylation at Ser(1177), but increased eNOS protein level. Hypoxia increased (1 to 3 hours), but reduced (24 hours) p42/44(mapk) phosphorylation. Thus, hypoxia-increased extracellular adenosine may result from reduced hENT1-adenosine transport in HUVEC. Hypoxia effect seems not to involve NO, but p42/44(mapk) may be required for the relatively rapid effect (1 to 3 hours) of hypoxia. These results could be important in diseases where the fetus is exposed to intrauterine environments poor in oxygen, such as intrauterine growth restriction, or where adenosine transport is altered, such as gestational diabetes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources