Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;25(1):62-7.
doi: 10.1007/BF02831389.

Repair of sheep metatarsus defects by using tissue-engineering technique

Affiliations

Repair of sheep metatarsus defects by using tissue-engineering technique

Zhanghua Li et al. J Huazhong Univ Sci Technolog Med Sci. 2005.

Abstract

Tissue-engineering bone with porous ,betatricalcium phosphate (3-TCP) ceramic and autologous bone marrow mesenchymal stem cells (MSC) was constructed and the effect of this composite on healing of segmental bone defects was investigated. 10-15 ml bone marrow aspirates were harvested from the iliac crest of sheep, and enriched for MSC by density gradient centrifugation over a Percoll cushion (1. 073 g/ml). After cultured and proliferated, tissue-engineering bones were constructed with these,cellS seeded onto porous f-TCP, and then the constructs were implanted in 8 sheep left metatarsus defect (25 mm in length) as experimental group. Porous ,-TCP only were implanted to bridge same size and position defects in 8 sheep as control group, and 25 mm segmental bone defects of left metatarsus were left empty in 4 sheep as blank group. Sheep were sacrificed on the 6th, 12th, and 24th week postoperatively and the implants samples were examined by radiograph, histology, and biomechanical test. The 4 sheep in blank group were sacrificed on the 24th week postoperatively. The results showed that new bone tissues were observed either radiographic or histologically at the defects of experimental group as early as 6th week postoperatively, but not in control group, and osteoid tissue, woven bone and lamellar bone occurred earlier than in control group in which the bone defects were repaired in "creep substitution" way, because of the new bone formed in direct manner without progression through a cartilaginous intermediate. At the 24th week, radiographs and biomechanical test revealed an almost complete repair of the defect of experimental group, only partly in control group. The bone defects in blank group were non-healing at the 24th week. It was concluded that engineering bones constructed with porous -TCP and autologous MSC were capable of repairing segmental bone defects in sheep metatarsus beyond "creep substitution" way and making it healed earlier. Porous ,-TCP being constituted with autologous MSC may be a good option in healing critical segmental bone defects in clinical practice and provide insight for future clinical repair of segmental defect.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Biomed Mater Res. 1998 Dec 5;42(3):357-67 - PubMed
    1. Tissue Eng. 2003 Apr;9(2):327-36 - PubMed
    1. Acta Orthop Scand. 1989 Jun;60(3):334-9 - PubMed
    1. J Biomed Mater Res. 1996 Dec;32(4):505-12 - PubMed
    1. Biomaterials. 2002 Dec;23(23):4493-502 - PubMed

Publication types

LinkOut - more resources