Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;93(6):1594-602.
doi: 10.1111/j.1471-4159.2005.03159.x.

Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse

Affiliations
Free article

Odorant-dependent, spatially restricted induction of c-fos in the olfactory epithelium of the mouse

E Marianne Norlin et al. J Neurochem. 2005 Jun.
Free article

Abstract

Volatile odorous chemicals are detected by around a thousand different G protein-coupled odorant receptors in the mouse. We demonstrated that exposure of the behaving mouse to odorant for a few minutes led to induction of the immediate early gene c-fos for several hours in a fraction of the olfactory sensory neurones in the nasal cavity. Associated with this odorant-specific induction event was activation of extracellular-regulated kinase (ERK)1/2 that preceded increased c-fos expression. The distribution of odorant-activated neurones mimicked the scattered and spatially limited distribution of neurones expressing a single odorant receptor gene. A small change in odorant chemical structure caused a zonal shift in the spatial distribution of activated neurones, suggesting that the gene expression change resulted from specific receptor interaction. Repeated exposure to odorant or use of different concentrations did not change the pattern of c-fos induction. These results indicate that odorant-induced c-fos expression can be used to visualize odorant representations in the olfactory epithelium that reflect late cellular events regulated by adequate odorant receptor stimulation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources