Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;26(3):397-406.
doi: 10.1016/j.neuro.2005.03.001.

State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides

Affiliations

State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides

Kristopher Silver et al. Neurotoxicology. 2005 Jun.

Abstract

Insecticidal pyrazolines inhibit voltage-sensitive sodium channels of both insect and mammalian neurons in a voltage-dependent manner. Studies on the effects of pyrazoline insecticides on mammalian sodium channels have been limited to experimentation on the tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) sodium channel populations of rat dorsal root ganglion (DRG) neurons. In this study, we examined the effects of the insecticidal pyrazolines indoxacarb, the N-decarbomethoxyllated metabolite of indoxacarb (DCJW), and RH 3421 on rat Na(v)1.4 sodium channels expressed in Xenopus laevis oocytes using the two-electrode voltage clamp technique. Both DCJW and RH 3421 were ineffective inhibitors of rat Na(v)1.4 sodium channels at a membrane potential of -120 mV, but depolarization to -60 mV or -30 mV during insecticide exposure resulted in substantial block. Inhibition by pyrazoline insecticides was nearly irreversible with washout, but repolarization of the membrane relieved block. DCJW and RH 3421 also caused hyperpolarizing shifts in the voltage dependence of slow inactivation without affecting the voltage dependence of activation or fast inactivation. These results suggest that DCJW and RH 3421 interact specifically with the slow inactivated state of the sodium channel. Indoxacarb did not cause block at any potential, yet it interfered with the ability of DCJW, but not RH 3421, to inhibit sodium current. Phenytoin, an anticonvulsant, reduced the efficacy of both DCJW and RH 3421. These data imply that the binding site for pyrazoline insecticides overlaps with that for therapeutic sodium channel blockers.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources