Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar:16 Suppl 1:S30-3.
doi: 10.1681/asn.2004110970.

Pathogenetic mechanisms of diabetic nephropathy

Affiliations
Review

Pathogenetic mechanisms of diabetic nephropathy

Francesco P Schena et al. J Am Soc Nephrol. 2005 Mar.

Abstract

Diabetes is the leading cause of ESRD because diabetic nephropathy develops in 30 to 40% of patients. Diabetic nephropathy does not develop in the absence of hyperglycemia, even in the presence of a genetic predisposition. Multigenetic predisposition contributes in the development of diabetic nephropathy, thus supporting that many factors are involved in the pathogenesis of the disease. Hyperglycemia induces renal damage directly or through hemodynamic modifications. It induces activation of protein kinase C, increased production of advanced glycosylation end products, and diacylglycerol synthesis. In addition, it is responsible for hemodynamic alterations such as glomerular hyperfiltration, shear stress, and microalbuminuria. These alterations contribute to an abnormal stimulation of resident renal cells that produce more TGF-beta1. This growth factor upregulates GLUT-1, which induces an increased intracellular glucose transport and D-glucose uptake. TGF-beta1 causes augmented extracellular matrix protein deposition (collagen types I, IV, V, and VI; fibronectin, and laminin) at the glomerular level, thus inducing mesangial expansion and glomerular basement membrane thickening. However, low enzymatic degradation of extracellular matrix contributes to an excessive accumulation. Because hyperglycemia is the principal factor responsible for structural alterations at the renal level, glycemic control remains the main target of the therapy, whereas pancreas transplantation is the best approach for reducing the renal lesions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources