Semiparametric proportional odds models for spatially correlated survival data
- PMID: 15938545
- DOI: 10.1007/s10985-004-0382-z
Semiparametric proportional odds models for spatially correlated survival data
Abstract
The last decade has witnessed major developments in Geographical Information Systems (GIS) technology resulting in the need for statisticians to develop models that account for spatial clustering and variation. In public health settings, epidemiologists and health-care professionals are interested in discerning spatial patterns in survival data that might exist among the counties. This paper develops a Bayesian hierarchical model for capturing spatial heterogeneity within the framework of proportional odds. This is deemed more appropriate when a substantial percentage of subjects enjoy prolonged survival. We discuss the implementation issues of our models, perform comparisons among competing models and illustrate with data from the SEER (Surveillance Epidemiology and End Results) database of the National Cancer Institute, paying particular attention to the underlying spatial story.
Similar articles
-
Modelling spatially correlated survival data for individuals with multiple cancers.Stat Modelling. 2007 Jul 1;7(2):191-213. doi: 10.1177/1471082X0700700205. Stat Modelling. 2007. PMID: 19789726 Free PMC article.
-
Parametric models for spatially correlated survival data for individuals with multiple cancers.Stat Med. 2008 May 30;27(12):2127-44. doi: 10.1002/sim.3141. Stat Med. 2008. PMID: 18167633 Free PMC article.
-
Spatially dependent polya tree modeling for survival data.Biometrics. 2011 Jun;67(2):391-403. doi: 10.1111/j.1541-0420.2010.01468.x. Epub 2010 Aug 19. Biometrics. 2011. PMID: 20731644 Free PMC article.
-
Multivariate parametric spatiotemporal models for county level breast cancer survival data.Lifetime Data Anal. 2005 Mar;11(1):5-27. doi: 10.1007/s10985-004-5637-1. Lifetime Data Anal. 2005. PMID: 15747587 Review.
-
Spatial Data Analysis.Annu Rev Public Health. 2016;37:47-60. doi: 10.1146/annurev-publhealth-032315-021711. Epub 2016 Jan 20. Annu Rev Public Health. 2016. PMID: 26789381 Free PMC article. Review.
Cited by
-
Modelling spatially correlated survival data for individuals with multiple cancers.Stat Modelling. 2007 Jul 1;7(2):191-213. doi: 10.1177/1471082X0700700205. Stat Modelling. 2007. PMID: 19789726 Free PMC article.
-
Semiparametric bayes' proportional odds models for current status data with underreporting.Biometrics. 2011 Sep;67(3):1111-8. doi: 10.1111/j.1541-0420.2010.01532.x. Epub 2010 Dec 22. Biometrics. 2011. PMID: 21175554 Free PMC article.
-
Competing risks model for clustered data based on the subdistribution hazards with spatial random effects.J Appl Stat. 2021 Feb 8;49(7):1802-1820. doi: 10.1080/02664763.2021.1884208. eCollection 2022. J Appl Stat. 2021. PMID: 35707554 Free PMC article.
-
Spatially-explicit survival modeling with discrete grouping of cancer predictors.Spat Spatiotemporal Epidemiol. 2019 Jun;29:139-148. doi: 10.1016/j.sste.2018.06.001. Epub 2018 Jun 21. Spat Spatiotemporal Epidemiol. 2019. PMID: 31128623 Free PMC article.
-
Bayesian Parametric Accelerated Failure Time Spatial Model and its Application to Prostate Cancer.J Appl Stat. 2011 Mar;38(2):591-603. doi: 10.1080/02664760903521476. J Appl Stat. 2011. PMID: 21475617 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources