Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;16(3):709-20.
doi: 10.1109/TNN.2005.845145.

Blind equalization using a predictive radial basis function neural network

Affiliations

Blind equalization using a predictive radial basis function neural network

Nan Xie et al. IEEE Trans Neural Netw. 2005 May.

Abstract

In this paper, we propose a novel blind equalization approach based on radial basis function (RBF) neural networks. By exploiting the short-term predictability of the system input, a RBF neural net is used to predict the inverse filter output. It is shown here that when the prediction error of the RBF neural net is minimized, the coefficients of the inverse system are identical to those of the unknown system. To enhance the identification performance in noisy environments, the improved least square (ILS) method based on the concept of orthogonal distance to red the estimation bias caused by additive measurement noise is proposed here to perform the training. The convergence rate of the ILS learning is analyzed, and the asymptotic mean square error (MSE) of the proposed predictive RBF identification method is derived theoretically. Monte Carlo simulations show that the proposed method is effective for blind system identification. The new blind technique is then applied to two practical applications: equalization of real-life radar sea clutter collected at the east coast of Canada and deconvolution of real speech signals. In both cases, the proposed blind equalization technique is found to perform satisfactory even when the channel effects and measurement noise are strong.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources