Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 7;3(1):5.
doi: 10.1186/1477-5956-3-5.

Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

Affiliations

Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis

Matthew A Churchward et al. Proteome Sci. .

Abstract

Background: The analysis of hydrophobic membrane proteins by two-dimensional gel electrophoresis has long been hampered by the concept of inherent difficulty due to solubility issues. We have optimized extraction protocols by varying the detergent composition of the solubilization buffer with a variety of commercially available non-ionic and zwitterionic detergents and detergent-like phospholipids.

Results: After initial analyses by one-dimensional SDS-PAGE, quantitative two-dimensional analyses of human erythrocyte membranes, mouse liver membranes, and mouse brain membranes, extracted with buffers that included the zwitterionic detergent MEGA 10 (decanoyl-N-methylglucamide) and the zwitterionic lipid LPC (1-lauroyl lysophosphatidylcholine), showed selective improvement over extraction with the common 2-DE detergent CHAPS (3 [(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Mixtures of the three detergents showed additive improvements in spot number, density, and resolution. Substantial improvements in the analysis of a brain membrane proteome were observed.

Conclusion: This study demonstrates that an optimized detergent mix, coupled with rigorous sample handling and electrophoretic protocols, enables simple and effective analysis of membrane proteomes using two-dimensional electrophoresis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Composite of 1D SDS-PAGE analyses of RBC ghost membranes extracted with A) 4% CHAPS, B) 2% SDS, C) 2% LPC, D) 2% lauric acid, E) 2% trans, trans-farnesol, F) 2% MEGA 8, G) 2% MEGA 9, H) 2% MEGA 10, I) 2% 1,2 dioleoyloxy -3-(dimethylamino)propane, J) 2% SB 3–10 (Sigma), K) 2% SB 3–10 (Calbiochem), L) C12E8, M)1-oleoyl-sn-glycerol, N) DL-α-O-benzylglycerol. Arrows indicate notable differences between extractions including 1, the multiple transmembrane spanning protein band III.
Figure 2
Figure 2
2-DE of RBC ghost membranes extracted with A) 4% CHAPS, B) 3% CHAPS : 1% LPC, C) 3% CHAPS : 1% MEGA 10, D) 3% CHAPS : 0.5% LPC : 0.5% MEGA 10. Extractions were carried out in buffer with 8 M urea, 2 M thiourea, protease inhibitor cocktail, and the indicated detergent for 1 hour on ice. Gels are representative of three independent experiments. Roman numerals indicate areas of improvement including i, the multiple transmembrane spanning protein band III.
Figure 3
Figure 3
2-DE of mouse brain membranes extracted with A) 4% CHAPS, B) 3% CHAPS : 1% LPC, C) 3% CHAPS : 1% MEGA 10, D) 3% CHAPS : 0.5% LPC : 0.5% MEGA 10. Extractions were carried out as for Fig. 2. Gels are representative of three independent experiments. Areas defined with Roman numerals are shown in Fig. 4.
Figure 5
Figure 5
2-DE gels of mouse liver membranes extracted with A) 4% CHAPS, B) 3% CHAPS : 1% LPC. Extractions were carried out as for Fig. 2. Gels are representative of three independent experiments. Arrow indicates specific differences between gels.
Figure 4
Figure 4
Enlargement and contrast of selected regions after 2-DE of mouse brain membranes (see areas defined in Fig 3). Areas i-vi show selective increases in spot number, resolution, and density. Samples were extracted with A) 4% CHAPS, B) 3% CHAPS : 1% LPC, C) 3% CHAPS : 1% MEGA 10, D) 3% CHAPS : 0.5% LPC : 0.5% MEGA 10. Results are representative of three independent experiments. Green arrows indicate spots showing increased volume and density, red arrows indicate decrease, blue arrows indicate novel spots.

Similar articles

Cited by

References

    1. Perez-Reyes E, Wei XY, Castellano A, Birnbaumer L. Molecular diversity of L-type calcium channels. Evidence for alternative splicing of the transcripts of three non-allelic genes. J Biol Chem. 1990;265:20430–20436. - PubMed
    1. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A. 2002;99:16899–16903. doi: 10.1073/pnas.242603899. - DOI - PMC - PubMed
    1. Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, Yamagata T, Kulski JK, Naruse TK, Fujimori Y, Fukuzumi Y, Yamazaki M, Tashiro H, Iwamoto C, Umehara Y, Imanishi T, Meyer A, Ikeo K, Gojobori T, Bahram S, Inoko H. Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Natl Acad Sci U S A. 2003;100:7708–7713. doi: 10.1073/pnas.1230533100. - DOI - PMC - PubMed
    1. Nandakumar MP, Shen J, Raman B, Marten MR. Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via naOH for two-dimensional electrophoresis. J Proteome Res. 2003;2:89–93. doi: 10.1021/pr025541x. - DOI - PubMed
    1. Mastro R, Hall M. Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and two-dimensional gel electrophoresis. Anal Biochem. 1999;273:313–315. doi: 10.1006/abio.1999.4224. - DOI - PubMed

LinkOut - more resources