Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;5(6):1039-44.
doi: 10.1021/nl050384x.

Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers

Affiliations

Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers

Alexander H Mueller et al. Nano Lett. 2005 Jun.

Abstract

Numerous technologies including solid-state lighting, displays, and traffic signals can benefit from efficient, color-selectable light sources that are driven electrically. Semiconductor nanocrystals are attractive types of chromophores that combine size-controlled emission colors and high emission efficiencies with excellent photostability and chemical flexibility. Applications of nanocrystals in light-emitting technologies, however, have been significantly hindered by difficulties in achieving direct electrical injection of carriers. Here we report the first successful demonstration of electroluminescence from an all-inorganic, nanocrystal-based architecture in which semiconductor nanocrystals are incorporated into a p-n junction formed from GaN injection layers. The critical step in the fabrication of these nanocrystal/GaN hybrid structures is the use of a novel deposition technique, energetic neutral atom beam lithography/epitaxy, that allows for the encapsulation of nanocrystals within a GaN matrix without adversely affecting either the nanocrystal integrity or its luminescence properties. We demonstrate electroluminescence (injection efficiencies of at least 1%) in both single- and two-color regimes using structures comprising either a single monolayer or a bilayer of nanocrystals.

PubMed Disclaimer

Publication types

LinkOut - more resources