Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;5(7):1614-25.
doi: 10.1111/j.1600-6143.2005.00916.x.

Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells

Affiliations
Free article

Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells

David S Game et al. Am J Transplant. 2005 Jul.
Free article

Abstract

There is accumulating evidence that cell surface molecules may be transferred between cells during an encounter. The aim of these experiments was to determine whether transfer of allogeneic material to T cells could influence human alloresponses. CD4(+) cells were cocultured with M1 cell (human fibroblast) transfectants expressing HLA-DR1, CD80 and CD86 alone or in combination. Up to 95% of the allogeneic T cells became positive for HLA-DR and the appropriate costimulatory molecules after only 4 h of coculture. The phenomenon required cell contact and cell membrane fluidity because transfer was abolished by transwell separation of the M1 cells and the T cells or by pre-treatment of the APC with paraformaldehyde. Flow cytometric sorting of T cells after coculture and subsequent mixed lymphocyte assays demonstrated that the T cells that had acquired both HLA-DR and costimulatory molecules could act as potent antigen presenting cells. Finally, matured human dendritic cells were also shown to transfer these molecules to CD4(+) cells, which could then act as antigen presenting cells for unprimed T cells and for a cell line specific for an HLA-peptide complex acquired from the DCs. Taken together, these data suggest a novel pathway for the amplification of human alloresponses.

PubMed Disclaimer

Publication types

MeSH terms