Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites
- PMID: 15944129
- PMCID: PMC4151245
- DOI: 10.1016/j.neuron.2005.03.015
Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites
Abstract
Increases in cytosolic Ca2+ concentration ([Ca2+]i) mediated by NMDA-sensitive glutamate receptors (NMDARs) are important for synaptic plasticity. We studied a wide variety of dendritic spines on rat CA1 pyramidal neurons in acute hippocampal slices. Two-photon uncaging and Ca2+ imaging revealed that NMDAR-mediated currents increased with spine-head volume and that even the smallest spines contained a significant number of NMDARs. The fate of Ca2+ that entered spine heads through NMDARs was governed by the shape (length and radius) of the spine neck. Larger spines had necks that permitted greater efflux of Ca2+ into the dendritic shaft, whereas smaller spines manifested a larger increase in [Ca2+]i within the spine compartment as a result of a smaller Ca2+ flux through the neck. Spine-neck geometry is thus an important determinant of spine Ca2+ signaling, allowing small spines to be the preferential sites for isolated induction of long-term potentiation.
Figures








Similar articles
-
Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices.J Neurophysiol. 1999 Mar;81(3):1404-11. doi: 10.1152/jn.1999.81.3.1404. J Neurophysiol. 1999. PMID: 10085365
-
Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage.J Neurosci. 2015 Sep 2;35(35):12303-8. doi: 10.1523/JNEUROSCI.4289-14.2015. J Neurosci. 2015. PMID: 26338340 Free PMC article.
-
Activity-dependent plasticity of the NMDA-receptor fractional Ca2+ current.Neuron. 2007 Jan 4;53(1):17-24. doi: 10.1016/j.neuron.2006.11.016. Neuron. 2007. PMID: 17196527
-
Differential responses to NMDA receptor activation in rat hippocampal interneurons and pyramidal cells may underlie enhanced pyramidal cell vulnerability.Eur J Neurosci. 2005 Dec;22(12):3077-90. doi: 10.1111/j.1460-9568.2005.04497.x. Eur J Neurosci. 2005. PMID: 16367774
-
Calcium signaling in dendrites and spines: practical and functional considerations.Neuron. 2008 Sep 25;59(6):902-13. doi: 10.1016/j.neuron.2008.08.020. Neuron. 2008. PMID: 18817730 Review.
Cited by
-
Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches.Curr Opin Chem Biol. 2013 Aug;17(4):663-71. doi: 10.1016/j.cbpa.2013.04.027. Epub 2013 May 31. Curr Opin Chem Biol. 2013. PMID: 23731778 Free PMC article. Review.
-
Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation.J Neurosci. 2012 Jun 27;32(26):9007-22. doi: 10.1523/JNEUROSCI.3084-11.2012. J Neurosci. 2012. PMID: 22745500 Free PMC article.
-
Dendritic morphology of neurons in medial prefrontal cortex and hippocampus in 2VO rats.Neurol Sci. 2012 Oct;33(5):1063-70. doi: 10.1007/s10072-011-0898-4. Epub 2012 Jan 5. Neurol Sci. 2012. PMID: 22218811
-
Single Synapse LTP: A Matter of Context?Front Cell Neurosci. 2019 Nov 12;13:496. doi: 10.3389/fncel.2019.00496. eCollection 2019. Front Cell Neurosci. 2019. PMID: 31780899 Free PMC article. Review.
-
Anomalous diffusion in Purkinje cell dendrites caused by spines.Neuron. 2006 Nov 22;52(4):635-48. doi: 10.1016/j.neuron.2006.10.025. Neuron. 2006. PMID: 17114048 Free PMC article.
References
-
- Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–1815. - PubMed
-
- Bonhoeffer T, Yuste R. Spine motility. Phenomenology, mechanisms, and function. Neuron. 2002;35:1019–1027. - PubMed
-
- Coss RG, Perkel DH. The function of dendritic spines: a review of theoretical issues. Behav. Neural Biol. 1985;44:151–185. - PubMed
-
- Crick F. Do dendritic spines twitch? Trends Neurosci. 1982;5:44–46.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous