Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep 2;280(35):30653-9.
doi: 10.1074/jbc.M505043200. Epub 2005 Jun 8.

Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE

Affiliations
Free article

Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE

Takashi Osanai et al. J Biol Chem. .
Free article

Abstract

The sigE gene of Synechocystis sp. PCC 6803 encodes a group 2 sigma factor for RNA polymerase and has been proposed to function in transcriptional regulation of nitrogen metabolism. By using microarray and Northern analyses, we demonstrated that the abundance of transcripts derived from genes important for glycolysis, the oxidative pentose phosphate pathway, and glycogen catabolism is reduced in a sigE mutant of Synechocystis maintained under the normal growth condition. Furthermore, the activities of the two key enzymes of the oxidative pentose phosphate pathway, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, encoded by the zwf and gnd genes were also reduced in the sigE mutant. The dark enhancements in both enzyme activity and transcript abundance apparent in the wild type were eliminated by the mutation. In addition, the sigE mutant showed a reduced rate of glucose uptake and an increased intracellular level of glycogen. Moreover, it was unable to proliferate under the light-activated heterotrophic growth conditions. These results indicate that SigE functions in the transcriptional activation of sugar catabolic pathways in Synechocystis sp. PCC 6803.

PubMed Disclaimer

Publication types

LinkOut - more resources